The First Fundamental Form Outline

1. The First Fundamental Form

Let S be a regular surface, and let $\vec{X}: U \rightarrow S$ be a regular parameterization of an open subset of S. The first fundamental form of S with respect to \vec{X} is the matrix

$$
g=(d \vec{X})^{T}(d \vec{X})
$$

Since $d \vec{X}$ depends on u and v, the matrix g also depends on u and v. The entries of g are as follows:

$$
g=\left[\begin{array}{cc}
\vec{X}_{u} \cdot \vec{X}_{u} & \vec{X}_{u} \cdot \vec{X}_{v} \\
\vec{X}_{v} \cdot \vec{X}_{u} & \vec{X}_{v} \cdot \vec{X}_{v}
\end{array}\right] .
$$

2. Dot Products and Lengths

We can use the first fundamental form to take the dot product of tangent vectors to the surface. If \vec{a}_{1} and \vec{a}_{2} are vectors at the same point in the $u v$-plane, and $\vec{t}_{1}=d \vec{X} \vec{a}_{1}$ and $\overrightarrow{t_{2}}=d \vec{X} \vec{a}_{2}$ are the corresponding tangent vectors to the surface, then

$$
\overrightarrow{t_{1}} \cdot \overrightarrow{t_{2}}=\left(\vec{a}_{1}\right)^{T} g \vec{a}_{2} .
$$

We can also use g to find lengths of tangent vectors to the surface. If \vec{a} is a vector based at a point in the $u v$-plane and $\vec{t}=d \vec{X} \vec{a}$ is the corresponding tangent vector to the surface, then

$$
\|\vec{t}\|=\sqrt{\vec{a}^{T} g \vec{a}}
$$

3. Lengths of Curves

If $\vec{x}(t)$ (for $a \leq t \leq b$) is a curve in the $u v$-plane, and $\vec{y}(t)=\vec{X}(\vec{x}(t))$ is the corresponding curve on the surface, then the length of \vec{y} is

$$
\int_{a}^{b} \sqrt{\vec{x}^{\prime}(t)^{T} g(\vec{x}(t)) \vec{x}^{\prime}(t)} d t
$$

Stated differently, the length of a curve on the surface is $\int d s$, where

$$
d s=\sqrt{\left[\begin{array}{ll}
d u & d v
\end{array}\right] g\left[\begin{array}{l}
d u \\
d v
\end{array}\right]}
$$

This quantity $d s$ is known as the length element (or line element). In can also be written in terms of the entries of the matrix g :

$$
\text { If } g=\left[\begin{array}{cc}
a & b \\
b & c
\end{array}\right], \quad \text { then } \quad d s=\sqrt{a d u^{2}+2 b d u d v+c d v^{2}}
$$

4. Areas of Regions

It turns out that

$$
\left\|\vec{X}_{u} \times \vec{X}_{v}\right\|=\sqrt{\operatorname{det} g} .
$$

Thus, if R is any region in the $u v$-plane, and $\vec{X}(R)$ is the corresponding region on the surface, then the area of $\vec{X}(R)$ is

$$
\iint_{R} \sqrt{\operatorname{det} g(u, v)} d u d v
$$

5. Types of Parameterizations

We can use $g(u, v)$ to determine the type of a parameterization:

- \vec{X} is equiareal if and only if $\operatorname{det} g(u, v)=1$ for all u and v.
- \vec{X} is conformal if and only if $g(u, v)=\lambda(u, v) I$ for some scalar-valued function $\lambda(u, v)$, where I denotes the 2×2 identity matrix.
- \vec{X} is isometric if and only if $g(u, v)=I$ for all u and v.

